Toutes les vidéos et images incluses sur ce blogs sont la propriété de leurs ayants-droits respectifs. Elles peuvent être retirées à tout moment par simple demande d'un ayant-droit. Les articles dont la source est mentionnée peuvent aussi être retirés par simple demande de l’auteur.



vendredi 28 janvier 2011

CHALLENGER, 28 janvier 1986



Il y a des évennments qu'on n'oublie pas, comme le 11 septembre 2001. En janvier 1986, l'explosion de Challenger en plein vol a marqué à jamais ma mémoire d'adolescent. Ce qui devait être un grand moment s'est terminé en cauchemar. retour sur cette journée noire.




Il faisait froid en cette matinée du 28 janvier 1986 sur le pas 39B de Cap Canaveral où, la navette spatiale Challenger était sur le point de s'élancer vers l'espace. L'instant zéro du compte à rebours tomba presque par routine peu après la mise à feu des moteurs principaux. Soixante-treize secondes plus tard, des millions de spectateurs regardaient, incrédules, le vaisseau spatial se désintégrer au milieu d'une gigantesque boule de feu, tuant sept astronautes et, avec lui, le rêve américain.






Explosion de Challenger 28/01/1986

L'accident a été provoqué par la rupture de l'un des joints toriques d'un des deux propulseurs à poudre accolés au réservoir principal d'hydrogène. Il avait souffert de conditions climatiques particulièrement froides au cours de la nuit précédant le tir. Les joints en question, développés par la compagnie américaine Morton Thiokol, située au nord des États-Unis, n'avaient pas été testés en conditions de grand froid. Les concepteurs considéraient que le lieu de tir, la Floride, bénéficiait d'un climat toujours ensoleillé. Le fait est qu'un phénomène météorologique touchant assez fréquemment la Floride avait fait descendre la température bien en dessous de 0 °C au cours de la nuit précédant le tir.

Les ingénieurs de Morton Thiokol avaient néanmoins de sérieux doutes sur la capacité de résistance du joint au froid, à cause notamment d'incidents remarqués au cours de certains vols précédents. Mais le joint n'ayant pas été formellement testé puisque la question du froid ne s'était même pas posée, ils furent incapables de prouver la faiblesse de cette pièce au directeur de tir.
L'enquête révélera également que les ingénieurs de sécurité de la NASA estimaient les probabilités d'accident de l'ensemble du dispositif à environ 1 % alors que les directeurs de tirs, prenant la décision finale, tablaient des probabilités mille fois inférieures. Dans ces deux contextes, l'information concernant la solidité du joint ne prenait pas la même ampleur. Les directeurs de tirs décidèrent donc de passer outre et d'effectuer le tir.

La rupture progressive du joint sur le propulseur d'appoint solide (SRB) de droite laissa passer une flamme dirigée vers des éléments structuraux du réservoir de carburant principal. Vers 72 secondes, la structure du réservoir principal et des propulseurs d'appoints commence à lâcher et se désintègre vers T+73,124 s. L'orbiteur, encore intact, pivote de son orientation optimale pour résister aux forces aérodynamiques intenses et se déchire immédiatement en morceaux (73 s).
Challenger n'a pas été détruite par une explosion. Après la désintégration due aux forces aérodynamiques, le combustible qui se trouvait dans l'orbiteur et le réservoir principal brûle en quelques secondes, créant une boule de feu massive.
L'habitacle, toujours largement intact, est retombé vers l'océan.

Il a été prouvé que des astronautes ont survécu au choc initial (une bouteille d'oxygène de secours ayant été activée), mais on ignore si ils sont décédés durant la chute qui dura deux minutes au sein d'une cabine dépressurisée ou lors de l'impact avec l'océan.


L'équipage de cette mission était essentiellement militaire. Il s'agissait avant tout de déployer sur orbite le satellite TDRS-2 de l'US Air Force, mais aussi d'observer la comète de Halley. Parmi les membres d'équipage, se trouvait pourtant Christa McAuliffe, une jeune enseignante qui s'était vue confier pour mission de donner un cours depuis l'espace.

Le commandant de bord de ce vol 51-L était Francis R. Scobee, accompagné du pilote Michael J. Smith et des quatre spécialistes de mission Judith A. Resnik, Ellison S. Onizuka, Ronald E. McNair et Gregory B. Jarvis. A plusieurs reprises déjà, le lancement de Challenger - dont c'était le 10ème vol - avait été reporté pour des raisons météorologiques ou techniques. Mais ce 28 janvier, malgré une température particulièrement basse - elle ne dépassait pas les -13°C - les conditions étaient favorables.

La mise à feu fut suivie sur place par un nombre considérable d'invités, mais aussi par les téléspectateurs de l'Amérique entière. Les problèmes survinrent rapidement : 678 millièmes de seconde après l'instant zéro du décollage, une première bouffée de fumée grise apparut au niveau du joint inférieur du booster droit. L'endroit où se produisit cette fuite fait directement face au réservoir ventral, et sur les images enregistrées par les cinéthéodolites*, un écoulement de matière vaporisée apparaît nettement, démontrant la défaillance de l'étanchéité à cet endroit.







En moins de trois secondes, 8 autres bouffées apparurent, soit environ 4 par seconde, ce qui correspond à la fréquence oscillatoire du booster en plein effort. Puis, la structure se stabilisant, le joint redevint étanche... provisoirement.

Trente-sept secondes après la mise à feu, Challenger subit un effet de cisaillement atmosphérique provoqué par la traversée de deux courants aériens de sens contraire. Ces perturbations sont redoutées par tous les pilotes de ligne en raison des turbulences qu'elles engendrent, pouvant aller jusqu'à déstabiliser l'appareil.

Les systèmes d'orientation de la navette réagirent immédiatement en adaptant la poussée des moteurs de l'orbiteur - qui fonctionnaient à ce moment à 104 % de leur puissance - de façon à maintenir une trajectoire optimale. Il s'agissait néanmoins - l'enquête le révèlera - de la plus forte turbulence rencontrée jusqu'alors durant une ascension de navette spatiale.

A ce moment, les moteurs des boosters - dont le fonctionnement est automatique et continu - voyaient toujours leur puissance augmenter progressivement lorsqu'une petite flamme apparut au même endroit que la fumée grise un peu plus tôt. Pendant la trentaine de secondes qui suivirent, les capteurs enregistrèrent une différence de pression interne croissante entre les boosters gauche et droit, conséquence de la fuite observée. Durant ce même temps, la flamme grandit, atteignant une température de 3 100°C et allant jusqu'à lécher la surface du réservoir externe - qui renfermait un réservoir d'hydrogène liquide surmonté d'un réservoir d'oxygène liquide - et l'entretoise inférieure maintenant le booster droit.

A 64,7 secondes, la couleur de la flamme se modifia, indiquant un changement dans son alimentation. L'enquête a révélé plus tard qu'à ce moment, l'hydrogène commença à s'échapper du réservoir externe. A 73 secondes et 124 millièmes, un nuage circulaire de vapeur blanche apparut brusquement à sa surface : la structure était en train de céder sous la chaleur. Tout se précipita alors en quelques millisecondes.






Au même moment, le dôme inférieur du réservoir se sépara brutalement de l'ensemble, qui s'ouvrit comme une boîte de conserve. Des flots d'hydrogène liquide jaillissent en s'enflammant, et transformèrent toute la structure en un monstrueux chalumeau provoquant instantanément une poussée verticale estimée à 1 270 tonnes. Sous cette violence, le réservoir d'hydrogène remonta à travers la structure ; il percuta violemment le réservoir d'oxygène liquide qui le surmontait, et céda instantanément.

Au même instant et sous l'action de la chaleur, l'entretoise inférieure du booster droit lâcha. Celui-ci pivota sur son attache supérieure avant de heurter l'aile droite de l'orbiteur, avant de se retourner et de perforer la partie inférieure du réservoir d'oxygène. Cet enchaînement s'est échelonné sur exactement 13 millièmes de seconde.

Challenger - qui grimpait toujours à mach 1,92 et atteignait l'altitude de 14 km, était condamnée. Un nuage d'hydrogène et d'oxygène liquides entouraient le vaisseau. L'explosion fut titanesque. Les tensions subies par l'orbiteur, dont la charge aérodynamique était sévère durant cette phase de vol, provoquèrent aussitôt sa rupture, les ailes s'arrachant du fuselage qui, lui-même, se sépara en plusieurs tronçons.

Une scène surréaliste se déroulait alors dans la tribune des invités de Cap Canaveral : les spectateurs, pour la plupart peu habitués à voir un lancement autrement que devant leur petit écran, applaudissaient à tout rompre. Ils étaient persuadés d'avoir assisté à la séparation des boosters. En fait, les accélérateurs s'étaient bien détachés de la navette suite à l'explosion, mais celle-ci était en train de s'éparpiller en milliers de fragments incandescents, qui retombaient lentement dans l'océan Atlantique.

36,6 secondes après l'explosion, l'ordre d'autodestruction fut transmis aux deux boosters, chacun de ceux-ci poursuivant son vol individuellement et menaçant de retomber en zone habitée.

Une commission d'enquête fut formée afin d'examiner les enregistrements et films du décollage, ainsi que les nombreux fragments de l'orbiteur, des boosters et du réservoir externe, récupérés au fond de l'océan durant les mois qui suivirent.
Il apparut plus tard que la catastrophe avait bien été provoquée par la rupture des joints toriques (de section circulaire) situés entre les deux premiers segments du booster droit de la navette, provoquant vers l'extérieur une fuite de gaz incandescents. Ces joints, en caoutchouc synthétique, avaient été fragilisés et durcis par le froid extrême qui régnait en ce 28 janvier 1986.

Au moment de l'envol, la température était de - 13°C. Or, les joints étaient conçus pour pouvoir se comporter normalement jusqu'à une température de - 20°C. Que s'est-il donc passé ?
Ce matin-là, soufflait un léger vent provenant du booster gauche en direction du booster droit. Or, entre les deux, se trouvait le réservoir externe, réfrigéré à - 183°C afin de maintenir liquides l'hydrogène et l'oxygène qu'il contient. Les filets d'air à - 13° enveloppaient donc une masse rendue extrêmement froide, malgré son isolation thermique, avant d'entourer le booster droit dont ils abaissaient encore la température. Analysées ultérieurement, les données enregistrées ont révélé que celui-ci avait atteint une température inférieure à - 30°C.

Les boosters sont divisés en quatre segments reliés par des systèmes d'emboîtement à joints toriques. Ces derniers doivent s'adapter instantanément aux déformations subies par la contrainte du vol, avec une tolérance de 6 mm. Or, le durcissement des joints les amène à réagir beaucoup moins rapidement aux mouvements, avec un temps de réponse variant de 0,53 s (par + 24°C) à 1,9 s (par - 10°C). A - 30°C, cette durée devient prohibitive, ce qui explique la fuite intermittente constatée dès le départ.
& wikipedia

Aucun commentaire:

Related Posts Plugin for WordPress, Blogger...